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A general approach is proposed for modeling the structure of a two-way
contingency table, and for drawing inferences about the marginal and inter-
action effects, cell parameters, and conditional probabilities. The prior

distribution expresses uncertainty in a simple reduced model, in particular
the independence model. The posterior estimates of the cell parameters then

provide compromises between the cell frequencies and fitted values obtained

under the reduced model, in the spirit of another formulation by Leonard
(1975)y In a mental test context, the reduced independence model is identical

to Rasch's multiplicative Poisson model, and we therefore incorporate a
procedure for checking the adequacy of this model. Using some general ideas
on marginalization)considered by Leonard (1982), and Tierney and Kadane (1984)

it is possible to compute reasonable approximations to the full posterior

densities of many parameters of interest thus permitting thorough parametric
inference and statistical modeling. It is possible to proceed with the full
interaction model even in the presence of zero cell frequencies. All prior

parameters are evaluated with the assistance of the data via a hierarchical
Bayes procedure, thus permitting the sensible analysis of data sets. An

r x s cross classification of 5648 Marine Corps clerical students by school
and test grade is analyzed in detail and the posterior densities of the 96

possible interactions are used to suggest a simplified structure partitioning

and collapsing the table into a meaningful 3 x 2 table., ,,,-
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Bayesian Full Rank Marginalization for
Two-Way Contingency Tables

.1. Sampling Schemes for Two-Way Tables

It is assumed that the cell frequencies yIj are independent, given

corresponding cell parameters 0i,. and possess Poisson distributions with

respective means Sij, for i = 1, ..., r and j = 1, ... , s. It is furthermore

supposed that a log-linear model is appropriate and that

=logo. = 1 + X A + xB + x AB

1J 13 J

A B AB
where p, the X, X., and X respectively denote the main effect, and

the row, column, and interaction effects. Standard constraints of the

form XA = B = = x AB = 0 will not however be assumed under our full rank
i. j.

Bayesian approach, this aspect will be considered more fully in section 2.

For our full hierarchical prior approach we assume rs - r - s + I > 6.

For lower dimensions the uninformative prior approach indicated in

section 7 is more useful.

0



3

Under the above assumptions, the conditional distribution of

the yij' given that

E Ykg n (1.2)
kg

is multinomial with sample size n, and respective cell probabilities

AB
ij 0 i j  kg ( , r; j , ... s) (1.3)

kg

The analysis in the Poisson case will therefore also be appropriate

for an r x s contingency table where the overall total, but no further

margins, are fixed. The assumption in (1.1) may in this case be

replaced by the assumption

AB A +XB +XAR (1.4)y. .+ A.+A.
ij 1 I 1J

AB
for the multivariate logits Yij which satisfy

AB AB
AB =e / Ykg (1.5)

No main effect P is required in this situation since this would

cancel out in (1.5). This formulation shows the relationship between

log-linear Poisson analysis (Nelder & Wedderburn, 1972) and logit

analysis (Goodman, 1970).

0

0j
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We could instead condition on the row totals in order to obtain

our analysis for our r x s contingency table with row totals fixed.

For each i = 1, ... , r; we have that the distribution of yil, ... Yis

conditional on

Vig =n (1.6)

is multinomial with respective cell probabilities B, I satisfying

B/ 7 / (j = 1, ... , s) (1.7)

The assumption in (1.1) may now be replaced by

B B AB
- : + (1.8)

where we have r separate sets of multivariate logits satisfying

B B
B 'ij Yjg

= e / Z e (i 1, ... , r; j = 1, ... , s) (1.9)
lj

This analysis will therefore also be appropriate when we have r

independent multinomial distributions each with s cells, in which case

the main and row effects cancel out from the unconditional Poisson

situation. For example, when s = 2 we have a logistic linear model for

binomial data. However, results for all conditional models may be
4

obtained by firstly analyzing the unconditional Poisson situation and

then referring to appropriate transformations of the parameters.

-.



5

S,2. The Prior Distribution

A two-stage prior distribution is assumed for the unconditional

Poisson means 0. At the first stage, it is supposed that the 0ij

are a priori independent and Gamma distributed, given a and Cij. with

respective parameters a ij and a, and densities

i ij-i a ij

11(0. i a, - aEij) 1i a exp {- ai.} / r ( ij)

(0 iij 0 ij (2.1)

(i =  , .. . r; j = , . ., s)

The conditional prior mean and variance of ij, given a and Eij, are now

ij and ij /a respectively. The prior parameter a measures the degree

of belief in the prior estimate Eij"

ijjUnder these assumptions, the cell probabilities li in (1.3)

possess a single Dirichlet distribution, with joint density

AB

IT (,tAB ] a,,) = r(a) AB (j) (2.2)
ij

AB
-. .r ij)

ii 1

(Zi = 1; 0 > 0, . 1)

:.---, '.:.~~~~i 11 . : -.'- : . . " - -" -1 . - ' . , : .: - . .1 ' 1 " : : ' ' -1 - -. . ' . ' " : -1 ---: - .. " ': -1 1 " - -. .
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where

AB (2.3)
ij =  ij kg 

(kg

AB
denotes the prior mean of ij"

Therefore our independent first stage Gamma priors also imply

'L a conjugate prior distribution in the single multinomial situation

corresponding to an r x s contingency table with no margins fixed.

Similarly, we have, for i = 1, ..., s, that the joint distributions

of the conditional cell probabilities B . B in (1.7) areif'"' is

independent Dirichlet with joint densities

r (a) Bci

1Tr(c B),0B i (2.4)
i BB

(E _ = 1; Ei = 1 for j=l,...,s)

where

B (2.5)
'ii ij 9ig

S g
B

denotes the prior mean of i"

so that our assumptions will also yield a conjugate analysis for the

situation where the row totals are fixed.

S We now make a central assumption concerning the means ij for the

first-stage priors. This is more general than Good (1976) in the single

multinomial situation, who takes all the iAB in (2.3) to be equal,
ij

U implying exchangeability of the cell probabilities. We instead suppose that
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Fij = ij(k) (i = 1, ... , r; j = 1, ... , s) (2.6)

where the functional form of Eij (.) is specified and k is a q x I

vector of parameters where, q < r% corresponding to a reduced form of

the model. An important special case is

ex J +A B= exp {i + A + A. } (i = i ... , r; j = i, ... , s) (2.7)

corresponding to the independence model. Our prior assumptions then

say that we believe that the row and column factors may be independent

and that we wish to express a degree of certainty in this belief, as

represented by the parameter a. A large value for a says that we

are fairly certain about independence; as a decreases towards zero

this certainty decreases.

Under assumption (2.7) there is an overparametrization which can

be resolved by introducing any two independent constraints. For purposes

of derivationwe set XA B = 0 but our analysis will not ultimately
1 1

depend upon which particular constraints are chosen. The vector then
A . A adB ,B

comprises q = r + s - I parameters W, A, ... A and A B ' A
2 r 2

Many different reduced models could be taken to replace (2.7). If

r = s, we might have

= exp {i + A + AB + AB
ij 1 1 ij ij (2.8)

(I = 1, ... , r j = 1, .... , s)

. ..0" . - , . .. , --
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where is the Kronecker-Delta function. The assumption in (2.8)ij

implies a quasi-independence model, where the only non-zero interactions

are along the diagonal of the table. Note however, that only the prior

means % ,i'and not the cell parameters 0ij' are restricted by special

assumptions. A much more general model can hold for the 0.., whatever

is assumed for the g... The 0.. possess prior variability around the

reduced model.

U Another possibility, if the row and column factors are measured

on ordered scales, is to take

1ij( = 1 + log ij ( ... q)

where t.. is the fitted cellprobability corresponding to an underlying

continuous distribution, e.g., bivariate normal with five parameters

S..,6) In this case our analysis provides a procedure for

investigating the reasonability on this parametric assumption.

A parameter of particular interst is

= log ij- log ,ij (q) (2.9)lij

which could in general be called a parametric residual between the log

of the (i,j)th cell parameter Ci and the log of ij( ) corresponding

* to the reduced form of the model. A data based estimate for P.. would

help us to judge the deviation of the (i,j)th cell mean from its fitted

value under the reduced model. Therefore, when judging the plausibility

-.0-k .- .'. - . " - . ,. -,; . ,."w ,,.., - ,, -,, -. .,.
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of the reduced model it will be particularly important to obtain

posterior estimates and distributions for the pij"

Under the particular independence assumption in (2.7), Pij reduces,

via (1.1) to

A ~B +AB A B AB (.0
Pij = + Xi j + x - (Ii + Xi + x x = (2.10)

AB
i.e. this is precisely the interaction effect X i. Therefore, as a

special case of our analysis we shall consider the posterior distributions

of the interaction effects. Note that no functional constraints are
L AB

required on the X owing to our Bayesian assumption that, give a and

the 0ij possess a proper prior distribution with means I En the

independence case our reduced model is an obvious reparameterization of

Rasch's multiplicative Poisson model; see Rasch (1960), Leonard (1973), and

Lord and Novick (1968, p. 486). Our analysis will therefore provide a

procedure for checking the adequacy of Rasch's model.

We now turn to the second stage of our prior model, and consider

the first state prior parameters a and . The parameter a is referred

to by Fienberg and Holland (1973) as the flattening constant , but we

prefer the terminology shrinkage parameter. This parameter measures the

degree of belief in the null model, and it would be ambitious to solely

specify its value via a subjective evaluation. We therefore turn to a

hierarchical Bayesian procedure and assume a prior distribution for a.

This will permit the data to provide some information concerning

reasonable values of a. An alternative parameterization, useful in

the posterior analysis, is

a/(c + 1) (2.11)

SJ
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and, for simplicity, we assume the ignorance prior where is uniformly

distributed over the unit interval. This implies the prior density

L(a) = i/(a + 1)2 (0 < a < ) (2.12)

for a, which possesses a long Cauchy like tail. We propose here

an alternative to Good's log Cauchy density which depends upon further

prior parameters.

The prior parameters could easily be taken to also possess a

proper prior distribution. However, for simplicity, we suppose that

0 they are uniformly distributed over q-dimensional Euclidean space.

The ideas discussed in this section are related to the general

model checking approach of Leonard (1983). Note that our analysis,

based upon ideas of estimation and inference, will provide an alternative

to standard tests of significance, e.g., chi-square goodness of fit.

Early Bayesian theoretical ideas on marginalization in a contingency

table context are described in an unpublished report by Leonard (1972),

practical applications for an m x 2 table are discussed by Lewis, Wang,

and Novick (1975). See also a discussion by Leonard (1974).

3. The Posterior Analysis

The prior distribution of 0.. in (2.1) is Gamma with parameters

a <ijand a. The posterior distribution of 0ij conditional on a and

= %(Q) is Gamma with updated parameter yij + aij and a + 1,

and density

L

,0



i +  ij (z+1) y i  ij exp {- (+1ij)
(ij ay) = _ i j  (3.1)

It %+ F(Y ij + OtEij)

for (0 < 0ij <

where = )

In particular, the conditional posterior mean of 0 is

ii
E(S i. a'kq, Yi + (0-0) %.Q) (3.2)

where = I/(l+a). This compromises between ij(Q), representing the

reduced model, and yij representing the full (unstructured) model. The

,. estimation of C is critically important when judging how to compromise

between these two extremes.

We next consider the first stage prior parameters a and k. With

appropriate integrations with respect to the 0ij from the joint distri-

bution of the y ij0 ij0 a and 8 we find that their (exact) joint

posterior density is given by

H(C, I ) +c)2 exp { Z log r (yiJ + aEiJ) -EZ log P (acij) }
j jij ij i

6 (3.3)

x exp {- ( Z + a ij) log (1-c) + aij log c},
ij Y ij

where ij ij(k) "

6 " ._
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In order to approximately marginalize (3.3) with respect to let

denote the conditional posterior mode vector of ,, given a. This

satisfies the following equation in

ij (Q)

E (Yij + a Zij) - C ij)-{log (I+a) - loga}] = 0 (3.4)
_.] ij 3

where p (z) a log r(z)/z,

j= Cij (k = ij Qc)(3.5)

and, under the special independence assumption in (2.6),

ij Q

- ( ~ij ' O ,, ij , . . 0 iJ 0, . . )

where the only positive elements appear in the first, ith, and r+j-lth

positions.

Following Leonard (1982) and Tierney and Kadane (1984), we refer

to the approximation, based upon a Taylor Series expansion of (3.3) about

o T*o,~~)=flcx~x )exp {- ;I )T ~ -~ (3.6)

S

0-u

7e
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where R, the posterior information matrix of ,, given a, satisfies

-a 2 log H (a,
~R

T r

= 2 ( '1))- (1) (a~) j~ ~[~ ~~j Tij Yi a ij (Wij) ]  ij (ka) i Q"')

(3.7)

aij Ei(yij + ci.) - [(a'i.) - [log (1+a) - log al ]

X a2 ij (a)

2 T

where i() (z) a2 log r(z)/az and, under (2.7), the matrix of second

derivatives of ilj possesses just nine non-zero elements, each equal to

&ij in (3.5), in the (l,l)th, (l,i)th, (i,I)th, (i,i)th, (l,r+j-l)th,

(i,r+j-l)th, (r+j-1,1)th, (r+j-l,i)th, and (r+j-l, r+j-1)th positions.

The approximation in (3.6) tells us that

(a) The conditional posterior distribution of , given a, is approximately

multivariate normal

k a \, N ( A, c1) (3.8)

with mean vector and covariance matrix R

(b) By integration with respect to k, the marginal posterior

density of a is, approximately

• ; ,. ..: .. ,..i, .. ' . , .- ., , " .- , . ,- . .'. - .. , -
: " " " . i: .. - ' -" " - " "- *- - " " " " - " - "° " "
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H*(a I = (20) q R (a, 1 i ;) / (0 < <) (3.9)

For fixed a, the approximate posterior mean a of kaprovides a

smoothing estimator of which adjusts the usual maximum likelihood

A
estimator of Qunder the reduced model, by compensating for prior

uncertainty about the reduced (e.g. independence), model. Under the

A Bindependence model (2.7) with X = 0 we have

A A AA AA AB AB T
( ' 2 . . . 2 A A) where

A
P =log y.+ log y - log y

AA
Xi log y. - log Y

and

AB
A. log y - log y (3.10)

The estimators in (3.10) may be used as starting values for

the solution of (3.4), e.g., using Newton-Raphson; then (3.7) is the

limit of the Hessian in the Newton -Raphson itemizations. For each a,

the solutions for , and a may be used together with (3.3) to calculate

the approximate marginal posterior density of (t in (3.9).

Some applications of these results are now described: (a) Transforming

(3.9) to the corresponding posterior density of C = 1/(a+1) is useful.

A plot of this density on the interval (0,1) summarises the information

contained in the data about C, given our assumptions, and helps us

to judge the adequacy of the reduced model. If the density is concen-

trated near zero this suggests that the reduced model provides a

reasonable fit to the data. If the density is concentrated

, - -
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near one then the reduced model is unlikely to be appropriate. It may

be useful to compare the posterior expectation E( C I obtained by

appropriate integration, with the central value = . The involved

loss function arguments of Leonard (1983) suggest that E(C i ) >

may provide an alternative critical region to that implied by standard

fixed size tests for the goodness of fit of the reduced model.

(b) For any linear combination kT of k, the posterior probability,

Tgiven a, that < < z, is approximated by

P*(k T < z I a ) = _ 
z - kT I (3.11)

where D is the cumulative normal distribution function and and

satisfy (3.4) and (3.7). The corresponding probability, unconditional

upon a, may be approximated by

P*(kT k o P (kTk < , *( )da (3.12)

where *(a I ) is described in (3.9). The one dimensional integration

in (3.12) may be performed exactly, using numerical techniques. It is

best to first transform to = 1/ (a + 1) and then to integrate over the

unit interval. Similar integrations may be performed for the marginal

density of T k. For simple point estimation it suffices to average the

estimate with respect to the distribution for a in (3.9).

(c) The unconditional posterior mean of 0 1 may be obtained by averaging

the conditional mean in (3.2) with respect to the posterior distribution

of a and

.%
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In the special case where our reduced model is log-linear,

log ij = (i=l, ... , r; J=1, ...,s) (3.13)

ij Gj

the posterior mean of 0 ij, conditional upon a, but unconditional upon

k, is approximated by
E*(i ) = Yij + (1-C) exp d + i T } (3.14)

The unconditional posterior mean of 9ij is therefore approximated by

E*(Oi. I ) = * Yij + (1- *)hij (3.15)

with

* E*(C I ) E(1/(1+a) I Z) (3.16)

and
.- T T -Id1

hj = E( a exp { dijka + ij a d }) (1- *) (3.17)
i. 1+a

where the quantities in (3.16) and (3.17) may be approximately computed

by appropriate numerical integrations with respect to the distribution

in (3.9).

Then (3.15) provides a shrinkage estimation for 0ij which should

perform much better than yij with respect to squared error loss. Note

that the Yij have very bad frequential risk properties - see, for example,

Clevenson and Zidek (1975) and Tsui (1981). We have suggested

alternative shrinkage estimators for Poisson means to those recommended

in the literature. We also provide alternatives to the contingency table

S:

0•
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analyses of Leonard (1975) and Laird (1978) where the computations for

marginal posterior distributions are slightly more tedious. Our approach

could be regarded as similar to Good (1976) but with more flexible

assumptuns for the first state prior means which permit us to incorporate

model checking into our procedure. The very special case where all the

i are equal to a common prior parameter would correspond to Good's
ij

procedure and exchangeability of the 0ij.

The practical idea is to start off with a possible reduced

model as represented by the Cij(k). Then the posterior distributions

of the parametric residuals (e.g. interactions) pij , considered in the

next section, help us to consider whether this model is appropriate.

The posterior distribution of C = 1/(a+I) described above also permits

an overall model check. Once we have finalized our choice of model

we may refer to the posterior distributions of all parameters, probabilities,

and conditional probabilities of interest. Approximations are described

in the next section; the latest working reduced model should always be

incorporated as prior means, as long as this has scientific meaning

rather than just being over parametrized to fit the data.

4. Approximations Based on the Chi-square Statistic

The classical approximate distribution for the chi-square

goodness of fit statistic is based upon the assumption that, given the

oij , the yij are independent and approximately normally distributed with

respective means 0ij and variances 0 ij. However, if we instead combine

our Poisson sampling assumptions for the yij' given the Oi,,with our

-- ,." - -' ' ,- - • " - '. " " .
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first stage (Gamma) prior assumptions for the Ofj, given a and we find that

the y are marginally (given a and ,) independent with respective means

.ij =Ej and variances T1 ij where

- t T = / (a +1) (4.1)

If the y are taken to be marginally approximately normally distributed,

then the distribution of

2)

TX 2Q) = T E (Yij-ij2 / Eij (4.2)
" 0 "ij

is therefore approximately chi-square with rs degrees of freedom. Moreover,

the joint distribution of the YiJ, given T and is approximately

*"(- T,k) T rs T C exp {- X2()} (4.3)
iji

Proceed, for simplicity, under assumption (3.13), that the C follow

. a log-linear model. Then, as the prior distribution of T and are uniform,

it follows that their posterior density is, approximately

TT*(T, ) rs exp {-rs T. - X2(k)} (4.4)

where

X2 2( )= e 22

X 2 ) = 2 e + E- 2 Ei (4.5)" i i j ij Y
ii

Therefore, the vector maximising (3.3) is approximated by the vector

maximizing (4.4) and hence approximately satisfies the following equation
" .
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TdT'

i E d (e -y2 e- ) + rs4.. 0 0 (4.6)
ij %ij

Owing to the absence of digamma functions, (4.6) should be more readily

solvable by Newton-Raphson than (3.4). Furthermore R in (3.7) may be

approximately replaced by

T 4ij &L 2 -4ij ~t(7
, 

= - T{ d d (e + Yije )47
ij %ijij

Therefore the conditional posterior distribution of , given a, may

be taken to be approximately multivariate normal with mean vector and

covariance matrix 1 satisfy (4.6) and (4.7). Furthermore, the marginal

posterior density for a in (3.9) may be approximately replaced, from (4.4)

by

I*(a a) ' __ _ exp -rs T a_. X2 I

(1-i) rs-2 I

(0< W < 00) (4.8)

Suggestions (a), (b), and (c), at the end of section 3 may all be completed

in terms of these approximations. However, still more explicit, though less

accurate, approximations are available, based on the minimum chi-square

statistic

2m min ( ) (4.9)

• - * . .* - . '- . . . . "-- .- ". -.- ' " .-" * • -
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Firstly, the marginal distribution, given T and the ij' of this statistic

is approximately chi-square with rs-q degrees of freedom. It follows that

the marginal posterior density of T, under our uniform prior, is approximately

ll*(T I ) ,rs-q, exp { - T (0 < T < 1) (4.10)

which may be taken to replace (4.8). Secondly, a Taylor Series expansion,

up to the quadratic terms,of the expression in (4.5), gives

X2 (k)  2 T+ (k _ k*)TR,(k (4.11)

where k* is the minimum chi-square estimate of and

T d r T 2 d -T j

-= z di di (e i j  + 2 e ) (4.12)
ij

Substituting for X2 () in (4.4) and completing the square, we obtain the

approximations

k rs4.. (4.13)

and

_ T (4.14)

to the approximation posterior mean vector and information matrix of k,

given t. Roughly speaking the approximation in (4.13) will however only be

-1
accurate if the average frequency in the table is large compared with T

A,. Alternatively, (4.6) is available.

0

. -
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A
Note that, if is some other estimator of close to *, e.g., the

maximum likelihood estimation under the reduced model, then

A A-i
(4.15)

and

2 2 T T-1 (.6XM Q)Q+ V~ V (.6

where T A T A
* T eij' 2-dj

v= .dT (e ie (4.17)

and

TA TA
T ( J 2 -ijk

R E d d  (e + y2e (4.18)i%ij ijYi

Note further that, under the approximations in (4.13) and (4.14) the

unconditional mean vector and covariance matrix of are respectively

approximated by

E* ( { ) = *- Ey - I  ') rs *
d  

(4.19)

and

S1

.
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cov*(, I = E(T- f ),1 + r2s2 var (T-i I -1 T 1

ya , . " ! .  (4.20)

where, from (4.10),

I ( ) 1 2 -y ( X, (rs-q) Iy( X , 11(rs-q+2)) (4.21)
2
XM

and

var(-1 X ) 4 y( Xl, (rs-q-2) / y( X, (rs-q+2))- EE(T-1 - 2  (4.22)
4

v-i1-

with y(q,v) = fq z e- 3dz denoting the incomplete Gamma function.
0

Finally, under (4.10) the posterior mean of T = 1 - = / (a+l) is

approximated by

E*(T 2 =/l y( (rs-q+4) y( Y, (rs-q+2)) (4.23)

and the posterior variance of T is also readily approximated.

5. Posterior Distributions of Quantities of Interest

Consider, firstly, the posterior density of the parametric residual

* .. in (2.9). When a and B are know", a simple transformation of the Gamma11

distribution in (3.1) tells us that the posterior distribution of p is

given by

*T(p.i1y1  a,) = exp {(Pij + log %i)(y 1 j + al) + (yi + ai)

tog(l + t) - (a + 1) ije - log 1(Yi + aCij)} (5.1)

where T, TIq

In sections 3 and 4 we suggested various approximations of the form

.- . .. - ..... . - * *~ hA2.
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-Iva

to the conditional posterior distribution of ~,given a. Following the

general approach of Leonard (1982) we may therefore approximate the conditional

posterior density

by

IT*(P a) =sup H( y k .) 11(Q k a (5.3)

ij k iij

=1 (P Y ij) exp { (ij T qi ( )

(211) - q-) i

where kj. satisfies the equation

Slog RI (P liy~j Q =aQ -L 55

J ijaij

with =i ij~ij)
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and

2iJ -a log H(YijlYij, ij,') aij Qij )

ij '.ij ij

32 log C(LiY) i T + (5.6)

a2%2

where

log H = a (Pj + log + i (Yij + acij)

ij

+(i j+- o a+1 a (Ylj + acij)  (5.7)

and

2 log 1 - 1 a -2 + 2 (1) + ac (5.8)
-2 log IT = - ij+ ij Yj (Yij ij

35ij

Equation (5.5) should be solved by Newton-Raphson, using as matrix vector

for kij" Then (5.4) provides our approximation to the posterior density of

* j, given a. The unconditional posterior density of p may then be

computed from

0.
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*T*(P j I) *(Pijl, a )  H*(ulv)dt (5.9)

where, for example, H*(cXj) transforms (4.10). One dimensional numerical

integrations are required.

To a first approximation, if limited computer facilities are available,

the distribution in (5.4) could be replaced by the distribution in (5.1)

but with k set equal to in (4.13); then integrate with respect to (4.10).

When the reduced model takes the independence form (2.7) then (5.9)

provides an approximation to the posterior density of the interaction effect

AB
=i" Non-zero interactions may then be judged by investigating whetherPij

zero lies in the limits of this posterior density. It is important to make

a general practical inference, e.g., based upon the location, spread

skewness, and tail behavior, of this density, rather than just referring,

in classical mode, to a fixed tail probability. Highest density regions are probably

also too formalistic for this situation.

Approximate posterior probabilities may be computed for many other

quantities of interest, in similar fashion. For example, when considering

the cell probabilities Oij, the conditional density for 0.i in (3.1) replaces
iJj

the density for pij in (5.1). The unconditional density may be computed from

T*(0 ) = fl*(0 ija) R*(aI ) da (5.10)

where the first contribution to the integral takes exactly the same form as

(5.4). The contributions ij and Qa defined in (5.5) and (5.6) should

however now be computed using the derivatives
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log IT a log 0 + a log (1+a) -a p (YiJ + aEj) (5.11)

3E ij

and

2 2 ,(1)
log R = (Yij + a Eij) (5.12)

2ij

instead of those in (5.7) and (5.8).

Consider next the cell probability AB in (1.3). Conditional upon a

6 and k, the posterior distribution of AB is beta with parameters yij + a&jq)

and ZYkg + aftkg(q) - Yij -aEij W,) and density

I (0iA I4, ,) -- exp { Eyij + aEij()iJ log Oij I

Sexp f LYkg + alkg() -Yij aij ()] log -i

x exp {-log B EYi + a ( Ykg + aWkg( ) - YiJ - aij(.)] }

(0 < A < 1) (5.13)

where B(u,v) = r(u)r(v)/r(u + v).

This replaces a similar density for pij in (4.9), and the unconditional

density may now be computed from

Ui

..i> >
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- - f*(0j~)=f l(~al*a~ da (0 < < (5.14)

where the first contribution to the integrand again takes the same

form as (5.4). The vector ij and matrix j should now be computed using

the derivatives

AB

* a ~log TI = alog I A i~ ~* ap~

ogH_ ij - (Yij + OEij + a(EYkg +  a E Ekg )  (5.15)
kg

a ij

and

2 2 (1)(Yij + a2 (1) + a E Ekg) (5.16)2log = +eij) kg (y

a 2
ij

Furthermore, the conditional posterior distribution, given a and of the
B

conditional cell probability ij is beta with parameters yij + a Eij(Q) and

EYig + a E Eij( - ii -a Eij (k). Therefore the marginal posterior

Y AB
density of in (1.7) may be approximated in identical fashion to theij

ABdistribution for A but with E a replaced by Ey + a E
ij b t + g E Ekg ( ig g ig(

6. Linear Combinations of the Conditional Cell Probabilities

It is of some interest to consider parameters of the form

- B
Ea j 1~ , S) (6.1)

U i
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e.g., the average conditional row probability for particular columns, since

this may be a relevant quality in related tables.

We firstly consider a general problem which will help us with the first

stage of the situation at hand. Suppose that I, ... I Or possess independent

beta distributions, with respective parameters (ct , a), ... , (a, r ) then

we can find an approximation to the distribution of

= ai i (6.2)
i

Let T log 0 - log (l-6i). Then the joint distribution of Ti, ... , * r is

TH(T) =exp ot Tii  (ai + i)log (1 + e i)}(6.3)

i

IB (ail , d

As before, we maximize (6.3) with respect to TI, ... , r, but subject to the

constraint that

T.

Fa. e 1 (6.4)
1 Ti

Il+e

This yields the equation

e Ti +  
a i

. ... . (6.5)
T

i

]0 i +8
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where the Lagrange multiplier X satisfies

_- a a (6.6)

Tii

Replacing the T in (6.3) by their conditional maximum, given n yields

the approximation

(ak+X) k 8 nk (6.7)

k k n

(ck + a k  B(czk,k)

to the marginal density of n, where X is given explicitly in (6.6). This
I

approximation may be modified by a determinant term, yielding the explicit

final approximation

* * .•., ..
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1 1

'- " *( L
a a aia k

k 2 2ai  a i

I Ei 
E iUi + Ui + B

(ak + B(a k, ak  (6.8)

. Returning to our specific situation we may approximate the conditional

posterior distribution of nij in (6.1) by a distribution of the form (6.8)

but with (al . (ar t 6r) respectively replaced by (ylj +aclj(k),+ LEE( - Ylj - acl (k) "'' + (1 - - q))1

SYllglgq) ' Yrj rj Q) rj rJ

g g

It is straightforward to extend this to obtain an approximation to

the marginal posterior distribution of nil unconditional on a and --

*O simply follow the general procedure of section 5.

7. Linear Combinations in Log Space

Consider next the general problem where CI, ... , 0m possess independent

Gamma distribution with resDective parameters (q,' I)  
... , ( amcm ) and it

* is required to approximate the distribution of

Z(

-. 2 Y"aiY (7.1)
i

0.
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*where y. log 0..

The joint distribution of y1 , ... n is

HQ() = exp {Fyin. - ae Yi} x exp {log a Z n i log r (n1 1 (7.2)
i I

Maximizing with respect to ... , Y, subject to the constraint in

(7.1) yields the equations

Y rn + Xa . (7.3)

e-

a

where the Lagrange multiplier X satisfies

(7.4)

Z a. log L a
EZa. log (n/)+AEa2  /n (7.5)

We hence approximate the posterior density of by

TrM I r +E Zak g (qk/a) Tk- lLi k kJ

E a k k

Sk
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x exp {- fi- a i ( -E ak log (nk/a) }
i i k

k

k k k~

x exp {log a E ni - E log r (ni) } (7.6)
i

This approximation is applicable to our contingency table situation by

instead taking the summations and products to be over i 1, ... , r and

j = 1, ... , s and replacing the in. , a, and ai by y"** + aEiJ (6) ' a + 1,

and aij. Then (7.6) provides an approximation to the posterior density,

given a and k of

Z aij log O i= E a iYij (7.7)
ij ij

For example, a = 0 provides the uninformative prior situation where

no reduced model is incorporated. This assumption is particularly useful

when r and s are small. It is in this case meaningful, rather than considering

the interaction effect via (2.9) to directly find the approximate posterior

* distribution of, say

AB = y . + Y (7.8)
'kg kg k. - g .

This may be achieved b- setting

* -1 -1 -1 -1

k- 1 - r + r s
-1 -1 -1)

ak.=(-s - r s )(all j g)

= - r- s (all i # k)

-1 -I
- =r s (all i # k, j # g)

0
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in the approximation (6.6), which now reduces (as E a - 0) to
i-

f(igB ) y  + AB _ y ijk
-2 (7.9)

A 2where a = logy and v = E a i .
iij ij i i

The approximation in (7.6) may also be employed for general a and

and when a and possess the posterior density in (3.3). In this case the

marginal posterior density of E, unconditional on a and , may again be

approximated, using the general techniques of section 5.

8. Prediction

Consider the prediction of a future frequency Zij for the (i,j)th cell

when the future grand total for the table is fixed to be Zk = m. Then
ky

it is appropriate to take z to possess a binomial distribution with cellij
B

probability ,ij ' defined by (1.3) and sample size m.

The posterior distribution of i, given a and , is beta with

parameters yij + E ij () and Eykg + aE&kg() - Yij - aij Q). Hence the

predictive distribution of zij, given the y's and a and 8 is

P(Zij , a,

= (m+1) B(zij+Yi+aij(), m+ZYkg+akg() - zij -Yij - aij( ) )  (8.1)

B(zij+l, m-zij+l) B(yij+aij(), Eyk9+aFkg()-Yij-ij())

(zij 0, 1, ... M)

.. " . . . . -.
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The predictive distribution P(zi. ) of zij, unconditional upon

C! • x and may be approximated by again following the general techniques

of section 5. It is possible to predict zij when its row total is fixed,

in very similar fashion.

9. A Practical Case Study

The data in Table 1 comprise a 12x8 table cross-classifying 5648

examinees by school (A, B ... , L) and aptitude grade (1, 2, ... , 8) on

a military aptitude test prior to entering one of the twelve schools.

The first subrow of each row gives the observed frequencies, the second

subrow gives the observed conditional row percentages, and the third subrow

gives initial smoothed cell frequencies, discussed in the fourth paragraph

of this section. It is of interest to compare the effects of the selection

procedures (a combination of school policy and student choice) upon the entry

abilities of the various schools. The grade point boundaries are 70, 80, ... , 130.

The analysis is intended to be preliminary to a full study of a 12x8x10

table also classifying according to a criterion grade obtained by the

students upon graduation from one of the twelve schools.

The primary result of our analyses was that the 12x8 table may be

collapsed into the 3x2 cross-classification described in Table 4, i.e.

(a) For comparison of schools it is reasonable to consider the

conditional probability of obtaining one of the highest three

grades (1,2,3,)

(b) Four schools (B,C,E,I) are above average, with an average probability

of 0.571 for those three grades.

Se

S
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(c) Four schools (A,D,G,H) ire average with an average probability of

0.495.

(d) Four schools (F,J,K,L) are below average with an average probability

of 0.339.

Our analysis proceeded upon the following lines:

(I) A Bayesian explanatory interaction analysis which highlighted the

good and bad schools together with the relevant grades.

(11) Collapsing the 12x8 table to a 12x2 table, combining grades

1,2 and 3 and grades 4,5,6,7, and 8.

(III) Bayesian and significance testing investigations as to whether

the 12x2 table could be reduced to a 3x2 table.

(IV) Calculation of the posterior distributions of 12 conditional

probabilities (of obtaining one of grades 1,2, and 3 at each of

the schools). These roughly speaking compromise between the 12x2

table and the 3x2 table in the ration 2:3.

For step (I) the posterior density of T = a / (1 + a) was calculated

from the approximation in (4.10) for the method described in section 3

and smoothing the whole 12x8 table towards independence. The chi-square

2
value was X = 456.93 on 77 degrees of freedom. This density is described

as curve A of Figure 1 and possesses mean 0.172. Our analysis therefore

suggests a compromise between the saturated interaction model and the

independence model in the ratio 83:17 thus refuting independence across the

whole table. The corresponding posterior means of the cell frequencies are

described in the third subrows of Table 1; simpler results are however obtained

below.
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Approximations to the posterior densities of all interaction effects

( were obtained from (5.9) using (4.13) and (4.14) to approximate a and R

as appearing in (5.4). For example, the eight posterior densities for school

L are given in Figure 1, and are numbered according to grades I to 8.

Note that, for school L, the interactions for the highest grades 1-3

are clearly negative, while those for the lowest grades 6-8 are clearly

positive. The interactions for grades 4 and 5 seem positive, but a formal

U judgment might involve the precise specification of the size of a Bayesian

test. As the locations of these densities are close to zero, we prefer to

simply make the practical judgment that the interactions are probably positive

but that the evidence is inconclusive.

Note that, for school L, there is a zero count for grade 1, but that

the posterior distribution of the interaction effect is still proper.

While fairly flat this distribution still gives substantial evidence that the

interaction effect is negative. This however need not always be the case

for zero cell counts (e.g. if there were few observations in the same row

and column the interaction could still be zero).

There is therefore substantial evidence that school L is below par

among the twelve schools. Similar graphics were obtained for each of the

other eleven schools in turn. The results are summarized in Table 2; -, 0,

or + indicates clear negative, zero, or positive interactions. A box around

either of these symbols means that a precise judgment cannot be made without

more formalism but that this is our practical judgment of the interaction.

The most striking aspect of Table 2 is the clear demarcation between

the third and fourth grades (grade point boundary = 110 average score

acr -s all schools). Schools with positive interactions in the first three

, .. -. ... , .." 1 ..,. . . _ , . _ . ... ..* , , , , . ., ... . ; . . - , . _
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grades tend to have negative interactions in the last five grades, and vice

versa. There is therefore clear evidence that when comparing schools

(rather than assessing students) we should count high proportions in the

first three grades as good, high proportions in the last five grades as bad,

- and vice versa.

. Table 2 can also be used to assess the relative merits of the different

schools if various aspects of the raw data (e.g., sample sizes and percentages

for first three grades) are taken into account. Such considerations motivated

us to partition the 12x8 table into three 4x8 tables corresponding to the

good (B,C,E,I) schools, the average (A,D,G,H) schools, and the below average

(F,J,K,L) schools. For example, school C is preferred to school D for group 1

because of its superior interaction structure and because its observed

percentage of 0.550 for the first grade is based on a much larger sample

size than the value 0.529 for school D. The interactions of course become

more significant due to the larger sample sizes.

It was of interest to investigate whether these three subtables exhibited

separate independence of rows and columns. We therefore calculated the posterior

densities of T = a / (1 + a) performing our previous analysis for each

subtable individually. The posterior density (B2) for the second school

is described in Figure 1, and corresponds to a posterior mean of 0.78.

This suggests that the saturated and independence models should be weighted

in the ratio 1:4 and therefore provides substantial evidence in favor

of independence of performance for the average schools when all eight grades

are taken into account. However, a similar result is untrue for the good, and

below average schools since the posterior densities BI and B3 in Figure 1
S

0' o

-.b°*-----------,-- .* . - * - ..o- . - . - * . - - - - -
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correspond to posterior means of 0.36 and 0.27, refuting independence.

IEven if the rows and columns of a collapsed table summarising the important

features of the original table may still be independent, i.e., non-independence

for the original table may be due to local fluctuations between adjacent

cells rather than due to an importaut global ispect.

Therefore, at Step (II) of the analysis, we utilized the kay conclusion

of the interaction analysis by collapsing the whole 12x8 table into a 12x2

toI table, where the first column combines the first three grades, and the

second column combines the last five grades. Collapsed table A is described

in Table 3. It may be regarded as comprising these 4x2 subtables, corresponding

to the good, average, and below average schools.

We now obtain independence of rows and columns for each of the three

subtables under either a frequentist or Bayesian analysis. For the three

tables, the values of chi-square wiL-h 3 degrees of freedom are 6.87, 1.08,

and 8.21 with respective p-values oF .08, .78, and .04 respectively. The

* p-value of .04 for the below average group could be made substantially larger

by )mittiug school K and putting it in its own (inferior) group. However,

the overall value 16.16 of chi-square with 9 degrees of freedom is anyway as

lar ,e ais 0.27, oven though the sampLe sizes are very large. Our conclusion

* is iupported by the Bayesian posterior distribution of T which in this

c ase vields ai posterior mean of 0.60 and weisdhts the saturated model for the

12-y2 table and the model with independence of row!; and columns for each of

the' three 4:. stubtables in the ratio 2: 1
2 x2

LL' mard (1983) argues that the value of 2 crresponding to E(T X = 0.5

is in .!;proT1st critical value. On 9 degrc s oi freedom this value is

MO.. corresponding to the 78.8th percentile. On I degrees of freedom it is

:0- : ":: -:":: -: ' - " " " " " -
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remarkably 7.81 corresponding to the 95th percentile. Therefore our frequentist

and Bayesian procedures give roughly the same validation when considering each

4x2 table individually.

At Step (III) of the analysis we may follow the conclusion of Step (II)

by finally collapsing the 12x2 table into the 3x2 collapsed table B described in

* Table 4. This provides a very simple summary of the main features of Table 1.

* At Step (IV) we obtained the posterior distribution of the probabilities,

for each of the twelve schools separately, of obtaining one of the first three

grades. Here the procedures of section 5 were applied to the frequencies in Table

3, but where Table 4 represents the reduced model. The posterior means of the

cell probabilities are described in Table 5. The full posterior densities are

* available upon request.

The data base considered in this section has been analyzed by several previous

* authors, e.g., Sims and Hiatt (1981), Dunbar and Novick (1984) who for various

* -reasons, selected the population to omit about 1000 of the students. The larger

data set is of lower quality; however if these extra students are included, then

very similar conclusions are reached.
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Table 1

Grade

1 2 3 4 5 6 7 8

" 20 179 276 316 123 27 10 4
A (2.09) (18.74) (28.90) (33.09) (12.88) (2.83) (1.05) (0.43)

. 19.05 177.72 275.06 313.17 122.08 31.45 11.51 4.96

10 80 112 112 6 5 0 1
B (3.07) (24.54) (34.36) (34.36) (1.84) (1.53) (0.00) (0.31)

9.13 76.30 108.60 110.31 11.91 7.25 1.11 1.39

25 293 390 337 126 66 32 18
C (1.94) (22.77) (30.30) (26.18) (9.74) (5.13) (2.44) (1.40)

24.07 282.33 385.61 348.55 131.64 66.89 30.84 17.09

3 32 55 51 17 7 3 2
D (1.76) (18.82) (32.35) (30.00) (10.00) (4.12) (1.76) (1.18)

2.93 31.75 53.82 51.40 17.68 7.41 3.06 1.95

2 41 46 43 12 4 0 0
S E (1.35) (27.70) (31.08) (29.05) (8.11) (2.70) (0.00) (0.00)

2.04 38.51 45.29 43.59 13.08 4.72 0.50 0.25
C 10 81 138 242 145 32 6 2

SF (1.52) (12.35) (21.04) (36.89) (22.10) (4.88) (0.91) (0.30)
10.00 87.34 146.27 235.74 133.91 32.78 7.19 2.78

0 9 131 270 263 100 39 19 12
G (1.07) (15.54) (32.03) (31.20) (11.86) (4.63) (2.25) (1.42)

u 9.66 134.54 264.61 263.26 100.67 40.31 18.58 11.37
3 35 57 64 21 7 3 2

H (1.56) (18.23) (29.64) (33.33) (10.91) (3.65) (1.56) (1.04)

2.99 34.91 56.55 63.35 21.46 7.62 3.13 1.98

2 38 69 45 15 8 1 2
I.(1.11) (21.11) (38.33) (25.00) (8.33) (4.44) (0.56) (1.11)

2.13 37.02 65.89 46.98 16.24 8.33 1.44 1.96

1 28 49 81 32 28 10 4
J (0.43) (12.02) (21.03) (34.76) (13.73) (12.02) (4.29) (1.72)

1.44 30.40 51.94 79.63 31.43 25.38 9.06 3.71

* 1 29 51 56 37 18 6 2
K (0.50) (14.50) (25.50) (28.00) (18.50) (9.00) (3.00) (1.00)

1.35 30.20 51.98 57.17 34.86 16.79 5.64 2.00

0 48 87 162 62 71 21 7
L (0.00) (10.48) (19.00) (35.37) (13.54) (15.50) (4.59) (1.53)

1.21 53.93 94.39 158.83 61.04 63.09 18.93 6.57

1.52 17.97 28.33 31.37 12.32 5.52 1.97 0.99

S0. 173

- ** .- *



Table 2

Interaction Analysis

12 3 4 5 678

B + + + --- 0

C + 0 - E0 + +

E 0 + 0 0 0 0--

1 0 El + F1 0 0 0 0

A + 0 0 0 0 ElF 0

0D 0 0 0 0 0 0 0 0

G 0 0 R0 0 0 0 +

H 0 0 0 0 0 0 0 0

F 0 -- + + 0 0 0

Jo 0 wwIr + + +

K 0 0 0 0 + + E

L - - - El S + + +



Table 3

Collapsed Table A

Grades Success Grades
School 1 -3 Proportion 4- 8

B 202 (0.620) 124

C 708 (0.550) 579

-. E 89 (0.601) 59

I109 (0.616) 71

Total (1108) (0.571) (837)

*-A 475 (0.497) 480

D 90 (0.529) 80

G 410 (0.486) 423

H 95 (0.494) 97

*Total (1070) (0.495) (1090)

F 229 (0.349) 427

J78 (0.335) 155

K 81 (0.339) 119

*.L 135 (0.295) 323

Total (523) (0.339) (1024)



p.--Q 7 .Vw-V

Table 4

Collapsed Table B

Grades Grades

Schools 1 -3 4 -8 Total

B,G,E,I 1108 837 (1941)

(0.571) (0.429)

A,D,G,H 1070 1090 (2160)

(0.495) (0.505)

F,J,K,L 523 1024 (1547)

(0.339) (0.661)



Table 5

Posterior Means of Success Probabilities

School Probability School Probability School Probability

*B 0.590 A 0.496 F 0.342

C 0.562 D 0.508 1 0.337

E 0.582 G 0.491 K 0.339

I0.588 H 0.494 L 0.321
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